Gaussian processes for canonical correlation analysis

نویسندگان

  • Colin Fyfe
  • Gayle Leen
  • Pei Ling Lai
چکیده

We consider several stochastic process methods for performing canonical correlation analysis (CCA). The first uses a Gaussian Process formulation of regression in which we use the current projection of one data set as the target for the other and then repeat in the opposite direction. The second uses a method which relies on probabilistically sphering the data, concatenating the two streams and then performing a probabilistic PCA. The third gets the canonical correlation projections directly without having to calculate the filters first. We also investigate nonlinearity and sparsification of these methods. Gaussian Processes for Canonical Correlation Analysis Colin Fyfe, Gayle Leen and Pei Ling Lai 1. Applied Computational Intelligence Research Unit, The University of Paisley, Scotland. email:colin.fyfe,[email protected] 2. Southern Taiwan University of Technology, Tainan, Taiwan email:pei ling [email protected] Abstract We consider several stochastic process methods for performing canonical correlation analysis (CCA). The first uses a Gaussian Process formulation of regression in which we use the current projection of one data set as the target for the other and then repeat in the opposite direction. The second uses a method which relies on probabilistically sphering the data, concatenating the two streams and then performing a probabilistic PCA. The third gets the canonical correlation projections directly without having to calculate the filters first. We also investigate nonlinearity and sparsification of these methods.We consider several stochastic process methods for performing canonical correlation analysis (CCA). The first uses a Gaussian Process formulation of regression in which we use the current projection of one data set as the target for the other and then repeat in the opposite direction. The second uses a method which relies on probabilistically sphering the data, concatenating the two streams and then performing a probabilistic PCA. The third gets the canonical correlation projections directly without having to calculate the filters first. We also investigate nonlinearity and sparsification of these methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Processes for Canonical Correlation Analysis

We consider two stochastic process methods for performing canonical correlation analysis (CCA). The first uses a Gaussian Process formulation of regression in which we use the current projection of one data set as the target for the other and then repeat in the opposite direction. The second uses a Dirichlet process of Gaussian models where the Gaussian models are determined by Probabilistic CC...

متن کامل

Canonical Correlation Analysis for Determination of Relationship between Morphological and Physiological Pollinated Characteristics in Five Varieties of Phalaenopsis

Phalaenopsis is an important genus of orchids that is grown for economical production of cut flower and potted plants. The objective of this study is the evaluation of correlation between morphological and physiological traits of self and cross-pollination of 5 varieties of Phalaenopsis orchid. Some morphological traits were measured: Capsule length (CL), capsule volume (CV), weight of seeds in...

متن کامل

Canonical Analysis of the Relationship between Components of Professional Ethics and Dimensions of ‎Social Responsibility‌ ‌

  Background: Today, professional ethics and social responsibility play an important role in ‎organizations. This study aimed canonical analysis of the relationship between components ‎of professional ethics and social responsibility dimensions among the first high ‎school teachers in the Naghadeh province.‎‏ ‏ Method: This study, in terms of purpose is application, and in terms of data ‎collec...

متن کامل

Generalization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems

In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...

متن کامل

A Gaussian process latent variable model formulation of canonical correlation analysis

We investigate a nonparametric model with which to visualize the relationship between two datasets. We base our model on Gaussian Process Latent Variable Models (GPLVM)[1],[2], a probabilistically defined latent variable model which takes the alternative approach of marginalizing the parameters and optimizing the latent variables; we optimize a latent variable set for each dataset, which preser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008